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Report on the FX-91 Programming Language

Davip K. GIFForD, PIERRE JOUVELOT, MARK A. SHELDON, AND JAMEs W. O’ToOLE
PROGRAMMING SYSTEMS RESEARCH GROUP
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SUMMARY

This report gives a defining description of the program-
ming language FX-91. The FX (short for FX-91) pro-
gramming language is designed to support the parallel im-
plementation of applications that perform both symbolic
and scientific computations. The unique features of FX
include:

o An effect system, to discover expression scheduling
constraints. An effect is a static description of the
side-effects an expression may perform when it is eval-
uated. Just as a type describes what an expression
computes, an effect describes how an expression com-
putes.

o Abstraction over any kind of description, thus permit-
ting first-class type and effect polymorphism. Effect
polymorphism makes the F X effect system more pow-
erful than previous approaches to side-effect analysis
in the presence of first-class subroutines.

o Type and effect inference, so that declaration free pro-
grams can be statically type and effect checked. F X
also permits explicitly typed programs, and programs
that use explicit types only for first-class polymorphic
values and modules.

¢ First-class modules, which permit FX to serve as its
own configuration language. It also includes an archi-
tecture independent module of parallel vector opera-
tors.

The introduction offers a summary of and motivation for
the unique properties of FX-91.

o Chapter 1 presents the fundamental ideas of the lan-
guage and describes the notational conventions used
for describing the language and for writing programs
in the language.

¢ Chapter 2 describes the FX-91 Kernel. The FX Ker-
nel includes essential constructs and the type and ef-
fect system.

e Chapter 3 introduces built-in data types and opera-
tions, which include all of the language’s data manip-
ulation and input-output primitives.
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2 FX Report

INTRODUCTION

FX-91 is a programming language that we designed to
investigate the following questions:

e How can simple syntactic rules be used to deduce pro-
gram properties beyond type information?

o How important is information about the side-effects
of program expressions in a language that is designed
for parallel computing, and to what extent can unam-
biguous side-effect information be used to schedule a
program for parallel execution?

o How important are first-class polymorphic values and
first-class modules in a language that provides type
inference?

FX-91 is a major revision and extension of the FX-87 pro-
gramming language [GILS87]. The designs of both FX-91
and FX-87 were strongly influenced by Scheme [R86], es-
pecially in the choice of standard types and operations.

FX-87 was the first programming language to incorporate
an effect system [LG88]. Experimental data from FX-87
programs show that effect information can be used to auto-
matically schedule imperative programs for parallel execu-
tion {HG88]. However, we found that FX-87 was difficult
to use because extensive declarations were required in pro-
grams.

FX-91is designed to be easier to use than FX-87. FX-91
eliminates the requirement for most declarations [OG89,
JG91], provides a less complex effect system, and provides
a module system that supports programming in the large

[SG90).

We have found that an effect system is useful to program-
mers, compiler writers, and language designers in the fol-
lowing respects:

o An effect system lets the programmer specify the side-
effect properties of program modules in a way that is
machine-verifiable. The resulting effect specifications
are a natural extension of the type specifications found
in conventional programming languages. We believe
that effect specifications have the potential to improve
the design and maintenance of imperative programs.

o An effect system lets the compiler identify optimiza-
tion opportunities that are hard to detect in a conven-
tional higher-order imperative programming language.
We have focused our research on three classes of opti-
mizations: execution time (including eager, lazy, and
parallel evaluation); common subexpression elimina-
tion (including memoization); and dead code elimi-
nation. We believe that the ability to perform these
optimizations effectively in the presence of side-effects
represents a step towards integrating functional and
imperative programming for the purpose of parallel
programming,.

o An effect system lets the language designer express
and enforce side-effect constraints in the language def-
inition. In FX, for example, the body of a polymor-
phic expression must not have any side-effects. This
restriction makes FX the first language known to us
that permits an efficient implementation of fully or-
thogonal polymorphism in the presence of side-effects.
In FX, any expression can be abstracted over any type
and all polymorphic values are first-class. First-class
values can be passed to subroutines, returned from
subroutines, and placed in the store.

The FX-91 programming language was developed by the
Programming Systems Research Group at MIT. In addi-
tion to the authors, Jonathan Rees and Franklyn Turbak
contributed to the design of FX-91. Any information or
comments about FX-91 can be submitted to the FX elec-
tronic mailing list £x@lcs.mit.edu. Send requests to be
added to the list to fx-request@lcs.mit.edu.

An FX-91 interpreter written in Scheme can be
obtained by sending an electronic mail request to
fx-request®lcs.mit.edu.
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DESCRIPTION OF THE LANGUAGE

1. Overview of FX

F X uses lambda abstraction and beta-reduction as the ba-
sis of its computational model, and thus it is a member of
the lambda calculus family of languages. FX uses sym-
bolic expression (s-expression) syntax, and thus it is com-
patible with Lisp source maintenance tools. FX is lexically
scoped, statically checked, uses one variable namespace and
implements tail-recursion. All values in F X are first-class,
including subroutines, polymorphic values and modules.

The FX programming system is based on a kernel lan-
guage that defines the syntax and semantics of a core set
of primitive FX expressions. The kernel is primitive in the
sense that it defines twenty different value expressions, and
there is no simple way to express these expressions in terms
of one another. Thus the F X kernel forms the core of the
FX programming system from the point of view of both
the FX application programmer and the FX language im-
plementor.

The foundation provided by the F X kernel is supplemented
with a library of standard types and operators that are con-
tained in the £x module. The £x module contains types and
operations for booleans, integers, floating point numbers,
characters, strings, symbols, permutations, unique val-
ues, lists, vectors, symbolic expressions and input-output
streams. The £x module can be defined in terms of ker-
nel expressions, and can be replaced by programmers who
wish to change the implementation of standard types.

1.1.

The semantic definition of the FX kernel is divided into
a static semantics that is used to deduce the properties
of programs before they are run and a dynamic semantics
that describes the behavior of programs at execution time.

Semantics

There are two key theorems that relate the static and dy-
namic semantics of F.X. The type soundness theorem guar-
antees that the static type of an expression (the type com-
puted by the static semantics) will be a conservative ap-
proximation of its dynamic type (the type of the value com-
puted by the dynamic semantics). The effect soundness
theorem guarantees that the static effect of an expression
will be a conservative approximation of its dynamic effect.
These theorems permit results from the static semantics
to be used by FX implementations to improve dynamic
performance.

The FX static semantics is based on a hierarchical kinded
type system that includes kinds, universal polymorphism,
higher order types, and recursive types. The static se-
mantics describes expressions with description ezpressions.
There are two principle kinds of descriptions: types, which
describe the values expressions compute, and effects, which

describe the side-effects of expressions. An expression may
be polymorphic in any kind of description. Thus the type
of a subroutine may depend on the effect parameters passed
to it. Effect polymorphism permits the static semantics to
provide tight effect bounds on higher-order functionals in
a natural and simple manner.

The FX static semantics will reconstruct omitted type and
effect declarations in a manner that combines the implicit
typing of ML[MTH90] with the full power of the explic-
itly typed second-order polymorphic lambda calculus. The
FX reconstruction system relieves the programmer of the
burden of providing type and effect declarations while re-
taining the benefits of strongly-typed languages, includ-
ing superior performance, documentation, and safety. The
FX type reconstruction system will accept ML-style pro-
grams, explicitly typed programs, and programs that use
explicit types only for first-class polymorphic values and
modules. We offer this flexibility by providing both generic
and explicitly-quantified polymorphic types in FX, along
with an operator to convert between these two forms of
polymorphism.

The FX static semantics provides complete checking of
module values. The FX module system permits types and
values to be packaged as first-class module values. Because
modules are first-class values, FX does not require a sep-
arate configuration language.

1.2. Lexicon

The basic lexical entities used in the FX programming
language are the following:

e A digitisone of 0 ... 9.

e A letterisoneofa ... zor A .. Z.

o The set of extended alphabetic charr~ters must in-
clude: *, /, <, =, > 1,2 :, 8 % ., & -, []1,
0.

o A white space is a blank space a newline character, a
tab character, or a newpage character.

o A characteris a digit, a letter, an extended alphabetic
character, +, -, a white space or backspace character.

o A delimiter is a white space, a left parenthesis or a
right parenthesis.

e A token is a sequence of characters that is separated
by delimiters.

e A numberis a token made of a non-empty sequence of
digits, possibly including base and exponent informa-
tion, a decimal point, and a sign. (see Chapter 3).
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o A literal is either a number, or a token that begins
with * or #, or a sequence of characters or \ enclosed
in double quotes ", or the symbol keyword and an
identifier enclosed in parentheses.

e An identifier is a token beginning with a letter or ex-
tended alphabetic character and made of a non-empty
sequence of letters, digits, extended alphabetic char-
acters, and the characters + and -. Note that + and -
by themselves are also identifiers. Identifiers are case-
insensitive.

FX reserves the following identifiers. Reserved identifiers
must not be bound, redefined, or used as tags for sums.

abs and begin
cond define-abstraction define
define-datatype define-description define-typed
desc dlambda effect
else extend extract
fx it lambda
let letrec let*
load match naxeff
module moduleof open

or plambda poly
product productof proj
select sum sumof
symbol tagcase the
type val with

Comments in FX are sequences of characters beginning
with 2 “;” and ending with the end of the line on which
the “;” is located. They are discarded by F X and treated
as a single whitespace.

1.3.

Static errors are detected by the F.X static semantics. All
syntax, type, and effect errors are detected statically and
reported. The sentence “zr must be y” indicates that “it is
a static error if z is not y”.

Static and Dynamic Errors

Dynamic errors may be detected by FX when a program
is run. The phrase “a dynamic error is signalled” indi-
cates that FX implementations must report the corre-
sponding dynamic error and proceed in an implementation-
dependent manner. The phrase “it is a dynamic error” in-
dicates that FX implementations do not have to detect or
report the corresponding dynamic error. The meaning of
a program that contains a dynamic error is undefined.

1.4. Conventions

This report adheres to the following conventions:

e FX program text is written in teletype font. Pro-
gram text is comprised of identifiers, literals, and de-
limiters.

Meta-expressions, which are names; for syntactic
classes of expressions, are written in italic font. A pro-
grammer may replace any meta-expression by a com-
patible FX expression.

Certain FX language forms have a variable number of
components. A possibly empty sequence of n expres-
sions is noted ej...e, or ..J—;&. If the name of the
upper bound on subscripts is not used, we write the
shorter: e;.... If there is at least one expression in the
sequence (i.e. n > 1), we use eje;...en,. We usually
denote by ¢ (or any other subscripted e) an expres-
sion belonging to such sequence. Certain parameters
can have different forms; [2|y] stands for either z or y.

The set of values z that satisfy the predicate P is
noted {z | P(z)}; predicates are defined as usual. The
difference of two sets S and T is noted S — T. For
an ordered index set S, we note {;cge-} the set of e,
for each z of S. As a shorthand, {;¢[1,nje;i} is noted
{f_,e:}. The interval of ordered values between z and
y is noted [z, y]. If the lower bound is excluded, ]z, y]
is used instead; the same convention applies to upper
bounds.

The function that is equal to the function f, except at
z (not in the domain of f) where it yields y, is noted
flz — y]. As a short hand, we note f[*,z; — ]
the function equal to f, except at each of the pairwise
distinct n arguments z; where it yields ;. The result
of the application of f to z is noted fz.

A variable is free in an expression e if it does not ap-
pear in any of the binding constructs within e. A vari-
able that is not free is bound. (Binding constructs are
labelled as such in their definition.) All bound vari-
ables are alpha-renamed to avoid name clashes with
the surrounding context.

The syntactic substitution s of the variable id by the
expression e (noted [e/id]) is the function, defined by
induction on the syntactic structure of its domain,
that substitutes any free appearance of id in its argu-
ment by e; alpha-renaming of bound variables is per-
formed to avoid name clashes. For an ordered index
set S, we write [;¢se./id;] for the successive substitu-
tions of id; by e for each z of S (the variables id. must
be pairwise distinct). As a shorthand, [ig[1,njei/id;] is
noted [, e;/idi].

Universal quantification of a formula f(i) when i is in
a given interval [1,n] is written f(:) (1 < i < n).
This notation is straightforwardly extended to open
and semi-open intervals.

o A deduction system is a set of rules written in the

following way:




premise,...premise,
conclusion, ...conclusion,

which can be read as “If all the premise; are true, then
each conclusion; is true.” The premises and conclu-
sions are implicitly universally quantified over their
free variables. If there are no premises, a single box is
used.

¢ Kind, type and effect checking require a type and kind

assignment function TK that is the mapping of vari-
ables to their type or kind. To distinguish whether
TK is extended by a type or kind assignment, we re-
spectively replace the — sign by : and ::. Kind,
effect and type assertions are written in the following
way:

TK + d = k

TK Fe:t ! f

These assertions mean that “T'K proves that d has
kind k, and e has type t and effect f.” The empty
assignment is noted ¢.

e FV(z) is the set of free variables and literals of the
ordinary or description expression z.

2. The FX-91 Kernel

The FX Kernel is a simple programming language that
is the basis of the F.X programming language. All of the
constructs in the FX language can be directly explained
by rewriting them into the simpler kernel language. Thus,
the kernel forms the core of the FX language from the
point of view of both the application programmer and the
language implementor.

The FX Kernel has three language levels each with its
own set of expressions: value ezpressions, description ez-
pressions and kind ezpressions. In the simplest terms, pro-
grams are value {or ordinary) expressions, types are de-
seriptions, and kinds are the “types of types”.

e Programs are written using value expressions. Value
expressions form the lowest level of the language. Lit-
crals (e.g. #t) are examples of value expressions. It
is possible to write sophisticated programs and only
write value expressions.

¢ Declarations in value expressions are written using de-
scription expressions. Descriptions form the second
level of the language. There are three kinds of de-
scriptions: effect descriptions, type descriptions and
description functions. As the name suggests, descrip-
tions describe value expressions ~ in particular, ev-
ery legal value expression has both a type and an ef-
fect description. Most omitted declarations are recon-
structed by FX.
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o Declarations in description expressions are written us-
ing kind expressions. Kinds form the third and highest
level of the language. Kinds are the “types” of de-
scriptions, and every legal description expression has
a kind.

A complete specification for each level of the FFX Kernel
follows.

2.1. Kinds

k= type | effect | (->> ky ..kg)

For each kind special form, we give its syntax in its section
header and provide an informal description of its usage.
Kinds have neither static nor dynamic semantics.

2.1.1. <type

The kind expression type denotes the collection of de-
scriptions that describe the values of computations (the
so-called type ezpressions).

2.1.2. etfect

The kind expression effect denotes the collection of de-
scriptions that describe the side-effects of computations
(the so-called effect ezpressions).

2.1.3. (->> ky..kn)

A ->> expression denotes the collection of description func-
tions that map descriptions of kind k; to a type (the so-
called type constructors).

2.2. Descriptions
tin=1d |
(di diy...dip) |

(=> ei ((id; tiy)...(id, t8,)) tiny1) |
(productot (id; tiy)...(id, t4,)) |
(sumot (idy tiy)...(idy tin)) |
1z = (dz dry...dz,) |
(—> ei ((idy zy)...(id, 12,)) tzp4) |
(moduleof (abs ida, k,)...(abs ida, k,)
(desc idd; dr;)...(desc idd, dz,)
(val idy) tr))...(val idv, tz,)) |
(poly ((idy k1)...(id, k,)) tz) |
(productot (idy tzy)...(id, tz,)) |
(sumot (id) tr,)...(id, iz,)) |
1§
ei = id | (maxeff eiy...ei;)
dr ::= 1z | (dlambda ((idy ky)...(3d, k,)) tz) | di
di == ti| ei| id | (select e id)




6 FX Report

The syntax of expressions ¢ is given below.

Meta-variables that use i in their names (instead of z) de-
note description classes that can be omitted from user pro-
grams; they will be automatically inferred by the FX type
and effect inference system. Such descriptions are said to
be inferable. The class of inferable descriptions is contained
in the class of descriptions.

The inclusion semantics is a reflexive and transitive deduc-
tion system based on the C partial order defined below.
Intuitively, the description dz; is included in dz; (noted
dz; T dzj) iff dzy is more constrained than dz;. We note
dzy ~ dz2 if dz; C dzp and dz, C dz;.

For each description special form, we give its syntax in its
section header and provide an informal description of its
usage, its static semantics and its inclusion semantics (if
any). There is no dynamic semantics for descriptions.

2.2.1.

A variable denotes the description to which it is bound.

There are seven constant identifiers. £x..unit is the type
of expressions used only for their side-effects. fx..bool
is the type of booleans. fx..pure, fx..read, fx..write
and f£x..init are the effects of expressions that are re-
spectively referentially transparent, read-only, write-only
and allocation-only. (fx..refof t) is the type of mutable
references to values of type t. They are defined in the £x
module (see Chapter 3) to limit the number of reserved
identifiers.

Static Semantics

TKlid:: k] F id:: k

TK F fx..unit :: type

TK b+ fx..bool :: type

TK + Zfx..pure :: effect

TK + fx..read :: effect

TK F f£x..write :: effect

TK F f£x..init :: effect

TK + fx..refof :: (->> type)
2.2.2. (dzp dzy...dz,)

A description application is the type obtained by applying
the type constructor dzy to the descriptions dxz;.

Static Semantics

TKV dzy 22 (=>> ky...k,)
TKFdz 2k (1<i<n)
TKF (dzy dzy...dz,) :: type

Inclusion Semantics

dr; ~ d7; (0<i<n)

(dIo dIldIn) ~ (d:l,g dz"ldr',.,)
((dlambda ((1dy ky)...(id, ky)) ) dz)...dz,)
ooy dms/idi )t
gV (1<i<n)

(dlambda ((id; ky)...(1d, k) (12 1d)...1d)) ~ 1z

2.2.3. (=> ei ((idy 121)...(2dy 12,)) 12041)
The id; must be distinct.

An -> expression is the type of subroutines that map values
of type 1z; to a value of type tz,,, while performing the
side-effect ei. An -> expression is a binding construct.

Static Semantics

) TK bt ei:: effect
TI(’[‘i=1id,- : tz_i] o 1241 3t type (0<i<n)
TKE (=> e1 ((ady 111)...(2d, 17,,)) t2p4q) 2 type

Inclusion Semantics

et C e
tr; C t; (1<i<n)
Zpy1 C oy
(-) es (('dl tIl)...(idn tl’n)) tIn+1)
C

(->ef ((1d1 tlll)(‘ld,, tz’,,)) il"n+1)

id; § Ui FV(izj) (1<i<n)
(> e ((id; 1z,).. (:’d,, 2,)) Zn1)

(-> ei ((idy 17y).. (:d’ (=1 Lid;/id;]tz,))
[F=1id;/id; ]tzn+1)

2.2.4. (dlambda ((id; ky)...(id, k,)) tz)

The id; must be distinct.

A dlambda expression is the type constructor that maps
descriptions of kinds k; to the type tz. A dlambda expres-
sion is a binding construct.

Static Semantics

TK[? ,id; :: k] F iz :: type
TKF (dlambda ((id; k)...(idy ky)) t2)
(=>> ky...kn)




Inclusion Semantics

iz ~ i
(dlambda ((id; 4;)...) tz)

(dlambda ((idy k,)...) tz')

td; §FV(tr) (1<i:<n)
(dlamdda ((id; ki)...Cid, k,)) iz)

(dlambda ((id'y k1)...(idn ks)) [T, id's/id;]tz)

2.2.5. (maxeff e1)...e1,)

A maxef? expression is the cumulative effect of the effects
et;.

Static Semantics

TK F ey z: effect (1<:<n)
TK F (maxeff ei;...en,) :: effect

Inclusion Semantics

| (maxeff) ~ fx..pure |

| (maxeff e:) ~ ei|

| (maxeff es ei;) ~ (maxeff erp er) |

(maxeff e:; (maxeff ei; et3))

~

(maxeft (maxeff ei; eiz) eiz)

| (maxeff et e1) ~ ei

2.2.6. (moduleof (abs ida; k)...(abs ida, k,)
(desc idd dr,)...(desc idd, dz,)
(val idv;, tz2,)...(val idv,, tr,,))
The ida;, idd, and idv; must be distinct.

A moduleof expression is the type of modules that export
the abstract descriptions ida;, the transparent descriptions
idd; and the values #dv;. A moduleof expression is a bind-
ing construct.

Static Semantics

TK[}.,sda; s k] F dzp ::
TKP.,ida; ::

TKF (moduleof

kdy (1 <k <p)
k] ¥ (b=, dze/idd]tz; :: type
1gigm
bs ida; k bs id
:e:c, ,a le < csle’sgﬂzdﬁ‘)d )
(val idy; tzl) (val zdvm_z_:m))

type

2. The FX-91 Kernel 7

Inclusion Semantics

w, 0, T are permutations on |1,n}, [1,p], [I,m]
(moduleof
da; ky)...(abs id )
gge:c‘ idd, &1 2 des::l":d? dz,)
(val idv, izl) (val zdv,,. Zm))

~

oduleof

R8s Ty ke(1y) .. (a8 idag(y) kxgm)
(desc idd,(1) dzy(1))...(desc 1dd,(y) z:,({;)
(val idv,(yy t2,(1)) ...(val idv,(m) EZ7(m)

dr; C d7; (1<i<Yp)
tr; o tz’,- 1<j<m)
n (resp. m,p) > n’ (resp. m’,p')
odul
(m§agsez?ia kJ .(abs ida, k,)
desc xdb 71)...(desc dd, dz;)
(val idv, t:l) (val idvm tz,,,))
C
(moduleof

(abs ida; ky)...(abs ida, )
(desc idd; dz’l) .(desc i ;
)

(val idv; t74)...(val idvg,: i:t.’m:

2.2.7. (poly ((idy k)...(idy kn)) t2)
The id; must be distinct.

A poly expression is the type of polymorphic expressions
abstracted over descriptions of kind &;. A poly expression
is a binding construct.

Static Semantics

TK|? yid; 32 k] + 1z 2 type
TKF (poly ((idy k1)...(id, k,)) 1z) :: type

Inclusion Semantics

iz C id
(poly ((idy ky)...(3d, ky)) 1z)
C
(poly ((id; k)...(id, k,)) 1)

W7 ¥V (1<i<n)
(poly ((1d1 kl)(td'jn)) i)

(poly ((id'y ky)...(idn ka)) [Py ids/idi)tz)

2.2.8. (productof (idy tz;)...(id, tz,))
The id; must be distinct.

A productof expression is the type of aggregate values
with named fields. Each field id; corresponds to a value of
type iz;.

Static Semantics

TKF iz; :: type (1<i<n)
(productof (id; tz;)...(id, 1z,)) :: type

TK+
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Inclusion Semantics
i, C o
n 2 m
(productof (id; tzy)...(1d, 1z,))
C
(productof (id; r'y)...(idm t¥ym))

(I1<i<m)

2.2.9.

A select expression is the description named id, either
abstract or transparent, that is exported by the module e.
The effect of ¢ must be pure to prevent type abstraction
violation.

(Belect e id)

Static Semantics

TK+ : duleof
¢ (moabs :efa ky)...(abs ida, k,)
desc idd; dz

val idy; tzl) Yy
! fx..pure

TKF (select e ida;) ::

E_(1Zi<n)

TKF e : (moduleot
(abs ida
desc uib
val idv, tzl)

desc 1
! £x..pure

kl) (abs zda,.dﬁ.) )

TK[: ido; 3 k) - dy 5 bd; (1< < m)
TKF (select ¢ idd;) =z kd; (1 <j<m)

Inclusion Semantics

TKFe: (moduleot

da; k)...(abs id )
ge:c’z le) a‘(flezs’.c:c.:l"ulbl
val & 01 21

(select 3 zdd,)

~

[, (select e ida;)/ida;}dz;

(1gigm)

2.2.10. (sumof (id; tz;)...(id, 1z,))

The id; must be distinct.

A sumof expression is the type of tagged values of type iz
with tag id;.

Static Semantics

TKF tz; :: type (1<i<n)
TKF (sumof (1dy iz,)...(id, iz,)) :: type

Inclusion Semantics

i C i (1<i<n)
n < n

(sumof (id; iz;)...(id, iz,))

C
(sumot (idy 121)...Cidy 12 p1))

7 is a permutation on [1,n]
(sumof (id; tzy)...(id, tz,))

~

(sumof (idy(1) tZy(1))-..(idx(n) 1Z(n)))

Values

literal |
sugar |
id |
(e €1...en) |
(begin g €;...6,) |
(extend ¢ ¢;) |
(extract iz e id) |
(if ep e €2) |
(lambda ([idy | (id'y t/y))..[idn | (idn tZ0)]) € |
(et ((idy €1)...(id, €n)) €)
(1oad literal) |
(module (define-abstraction ida, ka; dza;)...
(define-abstraction ida, ka, dza,)
(detine-description idd; dzd;)...
(detine-description idd,, dzd,,)
(detine idv; e;)...(define idv, ep)
(define-typed idt; 1z; ¢;)...
(define-typed idt, tzy €,)) |

2.3.

€ =

(open e) |

(plambda ((idy k;)...(id, k3)) €) |
(product iz e;...e,) |

(proj e dz;...dz,) |

(sum iz id e) |

(tagcase tz eid e e3) |

(the iz e) |

(with eg ¢;1)

For each expression special form (see also the Sugars sec-
tion), we give its syntax in its section header and provide
an informal description of its usage, its static semantics
and its dynamic semantics.

The static semantics of expressions is defined modulo the
inclusion semantics of descriptions:

TK F e:tz! es
et ~ ef
iz ~ i
TKFe:tx el

The dynamic semantics is a deduction system based on the
trangitively closed — relation defined over pairs made of
values v or expressions ¢, and stores 0. A value is either a
literal, or alist of values or expressions in brackets {(v;...v,).
Stores are functions that map locations to values.

2.3.1. Literals

There are three kerne] literals: #t and #¢ for the £x. .bool
type and #u for the £x..unit type. Other literals are in-
troduced via the £x module. A literal evaluates to itself
and is a pure expression. All £x literals are immutable.

Static Semantics
TK F #t: fx..bool ! fx,.pure

TK + #f:fx..bool ! fx..pure
TK + #u: fx..unit ! fx..pure




Dynamic Semantics

A literal expression evaluates to itself.

2.3.2. id
A variable denotes the value it is bound to.

There are three constant identifiers: the fx.ref subrou-
tine allocates and returns a new reference with initial value
valo, the £x.~ subroutine returns the value stored in ref
and the fx. := subroutine replaces the value stored in ref
with vall and returns #u.

Static Semantics

TK[id : 2]+ id
TKI tx.ret

tz ! 2x..pure
(poly ((t type))
(-> £x..init
((valo t))
(fx..refof t)))
(poly ((t type))
(-> £x..read
((ret (£x..refof t)))
t))
(poly ((t type))
(-> fx..write
((ref (fx..Trefof t))
(vall t))
£x..unit))

TKF £x."

TKF £x.:=

Dynamic Semantics

((fx.ref v),0) (with { unbound mn o)
({#1oc* I}, oll — vj)

(fx." (*¥loc* {})),0
(ol,0)

((£fx.:= (*loc* l) v),0)
(#u,ofl v vi)

2.3.3. (60 61...6,,)

The expressions e; are successively evaluated to values v;
and the value resulting from applying vy (after implicit
projection if necessary, see open below) to v; is returned.

Static Semantics

TRF ¢ (= & (Gdy 20)...Gidy 12)) g D)
! egg '
t; ~ [Zle/idjltm (1<i<n+1)
TKFtd; = type (1<i<n+1)
TKFe : t2;)'e; (1<i<n)
TKF (eo €3...¢n) : iap
! (maxeff ei eig efy...ei,)
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Dynamic Semantics

(e,-,a) - (‘U,',O”)

(Cvo...vi_1 €...en),0) — ((vo...0; €iy1...€0),0")

(({*1ambda* (id;...1d,) €) v;1...v5),0)

—

([F=yvi/idi]e, o)

2.3.4.

The expressions ¢; are successively evaluated to values v;
and v, is returned.

(begin ep e;...€5)

Static Semantics
TK F & :1 ! ey (Oslign)
TKt (begin ¢y €;...65) : iz,
! (maxeff eiy ei)...et,)

Dynamic Semantics

(e,0) — (v,0)
((begin e),0) — (v,0)

(e0,0) — (vo,0”)
((begin eg € €3...),0)

—

((begin e; ,...),0")

2.3.5.

The expression eg is evaluated to a module vo and the value
of module e;, extended with all the bindings introduced by
vp, is returned. The expression e; has access to the bind-
ings of eg. In the case of conflict, the bindings of v, take
precedence. An extend expression is a binding construct.

(extend ¢ 1)

Static Semantics

TKt ¢ : (moduleof ]
(abs ‘ld_ﬂm ko1)...(abs idag, kOno)
(desc iddgy dzgy)...(desc 1ddom, dzom,)

(val idvgy tzoy)...(val idvgp, 1Zop,))
! eg
TKF (with eg €1) : tz ! ed
iz ~ (moduleof .
(abs 1dayy k11)...(abs iday,, kin,)
(desc iddy; dzyy)...(desc 1ddy,,, dTim,)
(val idvyy tz31)...(val idvyy, t11p,))
izyidag} = {12, idaoi} — {;2,4day:}
{2 1ddy;} = {72 iddo;} — {724 iddy; }
P; idvzg} = {?; idvo;} - {21 id‘vu}

TKF (extend ¢ ¢;)

: (moduleof .
(abs !da;l kgl)...(abs Idagn’ k2n:)
(abs 1(1_011 k11)...(abs iday, kln;)
(desc 1ddsy; dzo3)...(desc idd;m, dzam,)
(desc_ iddy; dz;;)...(desc idd;ml dzlml)
(val idvy; tr31)...(val idvy,, 172p,)
(val idvy; iz17)...(val idvlp, il‘lpl))

! (maxeff eip eif)
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Dynamic Semantics

An *extend* expression is a special form only available in
the dynamic semantics.

(8016) - (‘Uo, 6’)

(Cextend ey €1),0) — ((*extend* vy (with vy €;)),0')

(61,(7) — (vl)al)

((*extend#* vg €;),0) — ((*extend* vg v;),0')

((sextend* (*module* (id; v1)...(id,; vn))
(*module* (id'; v';)...(id'm v ;m))),0)
({(*module* (id’y v;)...(id"p vp)
(1({1 v’l)...(id'm ‘U'm)),d)

where {£=1i‘{’k} = {,k'=1idk} - {Z'l:li‘{k}'

2.3.6. (extract ir e id)

The expression e of product type iz is evaluated to an ag-
gregate value v. The value of the field id of v is returned.

Static Semantics

TK F ir: type
TK F e:tzx! et
iz ~ (productof (id; tr;)...(idn 1z,))

TK + (extracttre id;) : tz; ! et

Dynamic Semantics

(e,0) — (‘U,UI)
((extract ir e 1d),0)

—

((extract tz v id), o/)

(Cextract tr (»product* (idy v1)...(ad, v,)) id;),0

—

(viv 0’)

2.3.7. (if ey € e3)

An if expression evaluates eg to the value vo. If vg is #t
(resp. #1), then the value of e, (resp. e;) is returned.

Static Semantics

TK F ¢ : £x..bool ! ejg
TK + e :tz! ef
TK + ep:tz! eip
TKVF (if e e; €2) : tz ' (maxeff ey eiy ety)

Dynamic Semantics

(e0,0) — (v0,0°)
((if eo €; €3),0) = ((if vy €1 €3),0")

[(GE#t e1 e5),0) — (e1,0) ]

[((Gf# e e2),0) — (e2,0) ]

2.3.8. (lambda ([id) | (i1 t1)]...[idn | (id'n tZ0)]) €

The id; and id’; must be distinct.

A lambda expression denotes the subroutine that, when
applied to n values v;, returns the value of e with the zr-
gument values v; substituted for the formals id; and ;.
A lambda expression is a bind g construct.

Static Semantics

TK: = TK[jZ13dj : t75] (1<i<n+1)
TK; F 1 :: type (1<i<n)
TK; - td; :: type (1<i<n)
TKog1[foyidi s tii] etz ! ei
TKF (lambda ([id, | &1 ©21)] 1ida | & 220D
(B i (Cidy 1) | Gidy 1))
[(“in t’n) I (“i'n tz’n)]) 12')

! £x..pure

Dynamic Semantics

((Qambda (id, | Gd: @D idn | Gaa Z0]) ), 0)

—

((*lambda* ([id; | id'1]...[id, | id',]) €),0)

2.3.9. (let ((1d1 81)...(idn C,,)) e)

A let expression simultaneously binds each id; to the value
v; of e;. The value of e, evaluated in an augmented envi-
ronment that binds id; to v;, is returned. A let expression
is a binding construct.

Static Semantics

TKF e :ir; Ve (1<i<n)

G = {i|not_ezpansive(e;) (1 <i< n)}
TKliet1,n)-cidi : i) - iccei/idi]e : tz ! ei
TKF [?_,ei/id;]iz :: type
(Tet ((idy €1)...(1dn €5)) e)

: [?_—-_1 ei/idi]tz
! (maxef?f er;...e1, e1)

TKH+

where an expression is not.ezpansive iff it is a literal, an
identifier, a 1ambda expression, a plambda expression or a
non-application compound expression for which each value
subexpression is not_ezpansive.




Dynamic Semantics

((let ((1d1 61)(1dn en)) C),G’)

—

(({*1ambdas (id;...id,) €) e;...e;),0)

2.3.10. (load litereD

The expression in the file named literal is produced as a

value. No free variables are allowed in a load file, except if
defined in the £x module (see next chapter).

Static Semantics

¢ b (with fx (include literal)) : tz ! ez
TKF (load literal) : 1z ! ei

where include is an implementation-specific function that
returns the expression in the file whose name is given as
an argument.

Dynamic Semantics

((with £x (include literal)),0) — (v,0’')
((load literal),0c) — (v,0’)

2.3.11.

(module (define-abstraction ida; k; dzap)...
(detine-abstraction ida, k, dza,)
(detine-description idd; drd,)...
(define-description idd,, dzd,,)
(detine idv; e)...(define idv, )
(define-typed idt; 1z; ¢1)...
(define-typed idt, 1z, ¢,))

The ida;, idd;, idvi, idt; must be distinct.

A module expression evaluates to a module that contains
the abstract descriptions ida;, the transparent descriptions
idd; and the values of idv; and idt;. The representation
descriptions dza; of ida; can be mutually recursive. The
values ¢; and ¢, are successively evaluated and can be
mutually recursive. For each non-effect abstract descrip-
tion ida;, two subroutines are automatically defined in the
scope of the module expression: up-ida; maps from the rep-
resentation description to the abstract description, while
dsun-ida; goes the opposite way.
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Static Semantics

TK, = TK{-,ida; :: k]

TK, = TKl[:=1idvk : iik][1q=1idt1 : [;_n=l dzd,-/iddj]tzl]
[ up—ida; : Up(ida;, k;, dza;))
[A_,down—ida; : Down(ida;, k;, dza;)]

TK; b dza; 2 k (1<i<n)

TK, v dxd; :: kd; (1<j<m)

TKy, v [Ji,dzd;/idd;]tz; :: type (1<1<Lg)

TKg F [;‘"zl dzdj/iddj]ek H ﬁk ! Cik (1 S k _<_ p)

TK, F [T ,dzd;/idd;]¢i : 1! ed; (1<1<q)

F (module
TK ((%.%fine-abstraction tday ky dra,)...
(define-abstraction ¢ a,)
(define~description idd; d:ﬁl)...
(define-description idd,, dzd,,)
(define idv; e)...(define idv, ¢;)
(define-typed idt; tr; ¢1)...
(define-typed idty tz; €,))
: (moduleof
abs ida; k;)...(abs id
%desc_i 1 yzdls...(dggg i&}) dzd,,)
val idv; t4))...(val idy, tzpsn
(val idt) tz;)...(val idt, tz5))
! (maxef? eij...ei, efy...el,)

with the following definitions (where id; are fresh):

Up(dy, type, dz) = (> £x. .pure (d2) d;)
Up(dy, (->> ky...kp ), d2) =
(poly ((idy k1)...(idn ko))
Up((d1 idl...idn),type, (d, td;!d,,)))
Down(dl) k! d2) = Up(d2) k! dl)

Dynamic Semantics

The *module-no-rec#* and *rec* expressions are special
forms only available in the dynamic semantics.

((module
(define-abstraction ida; k; dza,)...
(define-abstraction ida, k, dza,)
(define-description idd, dzd,)...
(define-description idd,, drd,,)
(define idv; e;)...(define tdup )
(detine-typed idt) tr; ¢;)...
(detine-typed idt, tzy ¢';)),0)
((*module-no-rec#*
(idv [-, (1ambda (id) id) /up—ida;]
[fey (1ambda (id) id) /down—ida;]e;)...
(idvy [, (Lambda (id) id) /up—ida;)
(=) (Lamdda (id) id) /down—ida;]e,)
(idt; [, (1ambda (id) id)/up—ida,]
[, (1ambda (id) id) /down—ida;]¢;)...
(idt, 7o, (Qambda (id) id) /up—ida;)
[f=; (1ambda (id) id)/down—ida;]¢,)),0)
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(ex,0) = (vr,0')
((*module-no-rec* (1d; v1)...(idg_y vi_y)
(id ex)...(idy €,)),0)
((*module-no-rec* (idy v1)...(id; vi)
(idk+1 [vk/idk]ek“)...
(id, [ve/idE)ey)),0’)

((*module-no-rec* (id v1)...(1dy vp)),0)
({*module*

(idy B_y(*xece (.F_,(id; v;)) id;)/idi]vy)...

(idy [y (sxece (..;, (idj v5)) idi)/idi]vp)), o)

((*rec* ((idy v1)...C1dp vp)) tdi),0)
([, (*rec* ((idy v1)...(id, vp)) idi)/id}vi,0)

2.3.12.

(open ¢)

An open expression returns, from the polymorphic expres-
sion e, the value of e with the polymorphic description
variables id; of e replaced by inferred description expres-
sions di;. When a polymorphic value is directly applied to
values, open is used to perform implicit projection.

Static Semantics

TK ¥ e: (poly ((ad) k1)...Cadn &,)) z) ! &2
TK F dy sk (1<i<n)
TKF (open e) : [, di;/ud;]iz ! ex

TK F e : (poly ((ady k1) ...Cadyn km)) 7)) | €F
TK F ((open ey) ej...en) : tz ! ei
TKtF (eq €1...e0) s iz} e

Dynamic Semantics

[ epsm 00,0) = (&) ]

2.3.13. (plambda ((idy ky)...(id, k,)) )
The id; must be distinct.

A plambda expression denotes the polymorphic value that,
when projected onto n description expressions dz; of kind
k;, returns the value of the pure expression e with the argu-
ment values dz; substituted for the formals id;. A plambda
expression is a binding construct.

Static Semantics

Té]"!-=1id.- 2 k] F e:tzr! fx..pure
TKt (plambda ((id; k,)...Cidy k,)) €)
: (poly ((idy ky)...Cad, k,)) 1)

! £x..pure

Dynamic Semantics

[ ((plambda ((id; k;)...) €),0) — (e,0) |

2.3.14. (product iz e;...e,)

The n expressions ¢; are successively evaluated to values
v;. A product expression evaluates to an aggregate value
of product type tz, with each field id; having the value v;.

Static Semantics

TK + iz : type
itz ~ (productof (idy tz;)...(id, iz,))
TK F e:tr;ley (1<i<n)
TKF (product iz e;...e,) : tz
! (maxeff ef)...ei,)

Dynamic Semantics

(C(product tz e;...e,),0)

(((lambda (id)...id},) (*product* (id; id})...(id, id,)))
€1...6n),0)

where the id; are fresh.

2.3.15.

A proj expression projects the polymorphic expression e
onto the description expressions dz;, returning the corre-
sponding value.

(proj e dz;...dz,)

Static Semantics
TK F e: (poly ((idy k) ...(id, k,)) t2) T ei
TK b dz; ki (1<i<n)

TKF (proj e dzy...dz,) : [ dr;[idJtz ¥ e

Dynamic Semantics

{ ((proj e dy..),0) — (e,0) |

2.3.16.

The expression e is evaluated to v and a tagged value of
sum type iz with tag id and value v is returned.

(sum iz id €)

Static Semantics

TK F tz: type

iz ~ (sumof (id iz)...)
TK + e:tx! ei
TKF (sumtzide) : tz! es

Dynamic Semantics

(er Uj - (v) ”])

((sum tz id e),0) — ((*sum* id v),0’)




2.3.17. (tagcase tr e id e; e2)

The expressions e, e; and e, are successively evaluated to
values v, v1 and vp. The value v is a tagged value of type
1z with tag id; and value v/. If id is id;, then the result
of applying v; to v’ is returned, otherwise the result of
applying vz to v.

Static Semantics

TK F iz : type
TK + e:tx!ei
tz ~ (sumof (idy iz1)...Cidn tz,))
TK F e : (->eiz ((id; tz;)) tz,.) ! ey
TK b eg: (-> et ((id ) tz.) ! eip
TK F (tagcase tr e id; e €2)
s tz,
! (maxeff ei ei; ety et3 ely)

Dynamic Semantics

((tagecase iz e id ¢y ¢;),0)
(((lambda (1d1 1d2 tda)
(tagcase tr id) id idy id3)) e €1 €3),0)

where id; are fresh.

(tagcase tz (¥sum* id v) 1d v; v2),0) —

((vl v)va)

(tagcase iz (*sum* 1d v) 1d vy v2),0)

(Cvz (*sum* id v)), o)

2.3.18. (the iz ¢)

The type of e must be included in tz. The value of ¢ is
returned.

Static Semantics

TKF iz type
TKV e ! el
i C iz
TKF (thetze) : tz! e1

Dynamic Semantics

{ ((the tz ¢),0) —

(e,9) |

2.3.19. (with ¢; ;)

The pure expression ¢y is evaluated to vp and the value
of e;, evaluated in an environment extended with all the
bindings defined in the module vq, is returned. A with
expression is a binding construct.
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Static Semantics

TKF ¢ :

(moduleo?
abs ida; ky).. (abs ida, 5.)
desc idd, dzy). desc 1d dzm)
val idv tz;)...(val idv, tzp)

! £x. .pure
6= [[_,(with e idvy)/idvi]
[F.1(select e ida;)/ida;]
[)-1 dl',/ldd ]
TKF (with eg tdug) :

fizy ! fx..pure (1 <k<p

TKt ey 2 (moduleot
abs ida k1) (abs :da,,dﬁ-,)
desc z 1 desc 1 dz,,,)
val idv z,) (val idv, tz,)
! £x. .pure

6= [_,(with e idvy)/idvg]
[P (select e ida;)/ida;]
(s des idd]
TK | fe; iz ! ei
TKF (with eg 1) ¢

Otz ! Gei

Dynamic Semantics

(e0,0) — (vo,0")
((vith & €1),0) — ((¥ith yp €1),0”")

((with {*module* (idv; v;)...(idv, v,)) €),0)
([leui/idtHCYG)

2.4.

sugar

Sugars

= (and €;...e,) |

(cond (e; ¢1)...(e, €y,) (else €'ny1)) |

(Qet* ((idy ¢1)...(id, €n)) €) |

(letrec ((id; €;)...(ids €3)) €) |

(match e (pat, €)...(pat, €,)) |

(or e1...e5) |

idy.ids....idn .id |

id,.id; |

[e dzy...dz,] |

(define head e) |

(define-datatype [(id (id; k,)...(id, k,)) | id]
(id’l dl‘n ---dtlm,)---
Gid, dzpy ...dzpm,))

(do (id e &) (& e,) e) |

(abs (id; idy...1d,) k) |

(val (id; id,...id,) tz)

pat = literal |

-

id |

(e pat,...pat))
head = id|

(head (idy tz;)...(id, tz,)) |
[head Cidy kv)...(id k,))
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For each sugar special form, we give its syntax in its section
header, provide an informal description of its usage and its
rewritten form in terms of kernel constructs.

2.4.1.

An and expression performs a short-circuit “and” evalu-
ation of ¢; to v;, returning #f if one of the v; is #f, #t
otherwise.

(and ¢...e,)

Rewrite Semantics
o #t (n = 0)
o (if ¢y (and eg...e,) #£)

2.4.2. (cond (e; ¢'1)...(en ¢4) (clse €pyy))
A cond expression is a multiple-way test expression. The
tests e; are successively evaluated to v; and as soon as one
(say j) returns #t (or else is reached), the value of ¢; is
returned.
Rewrite Semantics

® ¢ny1 (n=0)

e (if ey ¢ (cond (ex ¢2)...(en €n) (else €p41)))

2.4.3. (let* ((id; ¢;)...Cid, ¢,)) €)

A let#* expression successively binds each id; to the value
v; of e; evaluated in an augmented environment that binds
id; to v; for j in [1,i — 1]. The value of e, evaluated in an
augmented environment that binds id; to v;, is returned.

Rewrite Semantics
(n=0)
o (let ((id; €)) (Qet* ((id; e3)...(id, e,)) €))

L

2.4.4. (letrec ((id; €;)...(id; €,)) ¢€)

A letrec expression recursively binds each id; to the value
v; of ¢;. The value of ¢, evaluated in an augmented envi-
ronment that binds id; to v;, is returned.

Rewrite Semantics

(let ((id (module (define id; ¢,)...(detine id, ¢,))))
(with id ¢))
where id is fresh.

2.4.5. (match e (paty e;)..(pat, e,))

A match expression evaluates ¢ to v and then performs a
sequential match of v against the patterns paf;. As soon
as a match is found with a pattern pat;, the value of ¢;,
evaluated in an environment in which the free variables
of paf; are bound to the appropriate components of v, is
returned.

Rewrite Semantics

(et ((id ¢))
ezpand,,.,.(pat, ...pat,,
€1...6n,
id,
(lambda (x) x),
(lambda (x) unspecified)))
where id is fresh and the clause expansion function
expand ,,,.(paYy...pat,, €1...e5, v, 5, f) is defined by:
o (fv),ifn=0
e ezpand, . (paty, v, (s e¢), e') where € is
ezpand,,,,.(pat,...pal,, e;...en, v, 8, f), otherwise.

The expression expansion function ezpand,,,(pat,v,s', f')
is defined by:

o (it (= patv) s’ f'), if pat is a literal and = is the
equality predicate defined on the type of the literal pat

e s if patis _
o (let ((idv)) s'),if patis id

e (ev (lambda (id;...id,) ¢’) (Qambda (z) f’)), where
the id; and z are fresh
and €' is ezpand,, (pat,...pat,, id;...ids, s, f'), if pat
is (e pat,...pat,).

The pattern expansion function
ezpand, ;(pat,...pat,, idy...id,, §', f’) is defined by:

o ¢ ifn=0

o ezpand,.,(pat, idy, ¢, f') where e is
ezpand, ,(pat,...pat,, id;...idy, s', f'), otherwise

2.4.6. (or e...e,)

An or expression performs a short-circuit “or” evaluation
of ¢; to v, returning #t if one of the v; is #t, #1 otherwise.
Rewrite Semantics

o #f (n = 0)

o (if ¢; #¢t (or e;...e,))

2.4.7. id.idy....1d,.1d

An infix left-associative “dot” expression returns the value
of id in the module that is the value of idy.id;....id,,.

Rewrite Semantics
o (vithid, id) (n=1)
e (with id, id;....id,.id)




2.4.8. idy..idy

A “dotdot” expression denotes the description expression
bound to id, in the module id;.

Rewrite Semantics

(select idy idy)

2.4.9. [e dzy...dz,;]

A [ expression returns the value of e projected on
dzy...dz,.

Rewrite Semantics
(proj e dz;...dz,)

2.4.10.

A define expression with parenthesized or bracketed head
respectively defines a function or a polymorphic value.

(define head ¢€)

Rewrite Semantics

e (define head’ (lambda ((id) iz,)...(1d, tz,)) e)),
if head is (head’ (idy 1z1)...(id, tz,))

o (detine head’ (plambda ((id; ky)...(idn kn)) €)),
if head is [head’ (idy ky)...(id, ky)]

2.4.11.

(define-datatype [(id (id) ki)...(idn ks)) | id]
(lt"l dz‘u ...dzl,,,,)...
(idp dzpy ..dzpm,))

A define-datatype expression defines a possibly higher-
order abstract type and a set of functions suited for creat-
ing and manipulating (via match) values of that type. A
higher-order type definition introduces the following defi-
nitions in the current module binding (the case for a simple
type is similar, with dlambda and plambda eliminated).

Rewrite Semnantics

o (define-abstraction id
(->> k;k")
(sumot (id'; (productof (L; dz;;)...
(Lm, dzlm,)))--.
(id, (productof (L, dzp1)...
(L, d2om,))))))

o (define-description sd-rep
(dlambda ((id; ky)...(id, k,))
(sumof (id'; (productof (L; dz;1)...
(L, dzim,)))...
(id, (productot (L dz,1)...
(Lm, d2pm,))))))
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e (define-typed id;
(poly ((idy k1)...Cidn kn))
(-> fx..pure
(Gid'y dziy)...(id'm, dzim,))
(id idy...id,)))
(1ambda ((id"y dzy)...(id" m, dzim,))
(up-id (sum (id—rep id;...3d,)
id;
(product (producto?
(L1 dz.-l)...(L,,,‘ dl‘.'m‘))
id'y.4d' m))))))

e (define-typed id;~
(poly ((idy ky)...(idn ks)
(z, effect) (z; effect) (¢ type))

(-> £x..pure
((v (id id;...1d,))
(s (=>z,
(Gid’y dziy)...(id" m, dZim.))
t))
(f (-> 24 (v (id idy...1dy))) t)))
t))

(plambda ((id; ky)...(ids k,)
(z, eftect) (z; effect) (t type))
(lambda
((v (id idy...id,))
(s (> zy (Qid"’, dz;)) ..., dzim ) 1))
(f (=>z3 ((v (id id;...id,))) 1))
(tagcase (id—rep id,...3d,)

(id—down v)
id;
(lambda (v,)
(s (extract (productof
(Ly dzy) ...
(Lm; dTim;))
Vg
Ly)..
(extract (productof
(L1 d]:u)
(L, dzim,))
Ve
Lm)))

(lambda (z) (f v)))))

where L;, id’s, 2i, t, v, vq, 5, f and z are fresh.

2.4.12. (do (id ey &) (e; &) €)

A do expression is a loop expression. The expression ¢
is iteratively evaluated, while the value of ¢ is #f, in an
environment in which id is initially bound to ¢y and then
to ¢; in all subsequent iterations. Once e; evaluates to #t,
the value of ¢, is returned.
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Rewrite Semantics

(letrec ((id (lambda (id)
(if ¢
e
(begin ¢
(id ¢))))N
Gid ¢))

where id is fresh.

2.4.13. (a.bs (tdl Idzid") k)

An abs form with a list of identifiers denotes a sequence of
abs forms for each id;.

Rewrite Semantics

e (abs idy k) (n=1)

e (abs id; k) (abs (idy...id,) k)

2.4.14. (val (id; idy...id,) tz)

A val form with a list of identifiers denotes a sequence of
val forms for each id;.

Rewrite Semantics

e (val idy tz) (n=1)

o (val id; tz) (val (id,...id,) tz)

3. Standard Descriptions

The £x module defines the standard effects and standard
types that are provided by every FX implementation.
They fill out the framework introduced by the FX Ker-
nel with a set of useful types and subroutines.

The FX standard effects are given first. The FX standard
types and type constructors appear in order of increasing
complexity. There is a section for each data type or type
constructor, giving its kind, a brief overview of its purpose,
the syntax of literals, a list of subroutines with their types,
an informal semantics and description of error conditions.
In the semantic description of a subroutine, arguments are
denoted by the names appearing in the type of the subrou-
tine.

3.1. Pure effect

The pure effect is the effect of referentially transparent
computations. It is already defined in the F.X Kernel (cf.
previous chapter).

3.2. Init effect
The init effect is the effect of computations that only ini-
tialize freshly allocated memory locations. It is already

defined in the FX Kernel (cf. previous chapter).

3.3. Read effect

The read effect is the effect of computations that only read
memory locations. It is already defined in the FX Kerne!
(cf. previous chapter).

3.4. Write effect

The write effect is the effect of computations that only
write memory locations. It is already defined in the FX
Kernel (cf. previous chapter).

3.5. Unit type
The unit type denotes the set of values of computations
that only perform side-effects. It is already defined in the

FX Kernel (cf. previous chapter).

There is one value of type unit: the literal #u.

3.6. Bool

type

The bool type denotes the set of boolean values. It is
already defined in the F X Kernel (cf. previous chapter).

There are two boolean literals: #t (for the true boolean)
and #1 (for the false boolean).

equiv? (-> pure ((p bool) (q bool)) bool)
and? (-> pure ({p bool) (q bool)) bool)
or? (~> pure ((p bool) (q bool)) bool)
not? (-> pure ((p bool)) bool)

Equiv? returns #t if p and q are both true or both false and
#1 otherwise. The subroutines and? and or? respectively
return the logical “and” and logical “or” of p and q. Not?
returns the negation of p.

3.7. Int

type
The int type denotes the set of integers.

An integer literal is formed by an optional base prefix, an
optional + or - sign (+ is assumed if omitted), and a non-
empty succession of digits that are defined in the given
base. There are four distinct base prefixes: #b (binary), #o
(octal), #d (decimal) and #x (hexadecimal). If no prefix is
supplied, #d is assumed.




= (-> pure ({(i int) (j int)) bool)
< (-> pure ((i int) (j int)) bool)
> (=> pure ((i int) (j int)) bool)
<= (=> pure ((i int) (j int)) bool)
>= (-> pure ((i int) (j int)) bool)
+ (-> pure ((i int) (j int)) int)
* (-> pure ((i int) (j int)) int)
- (-> pure ((i int) (j int)) int)
/ (-> pure ((i int) (j int)) int)
neg (~> pure ((i int)) int)

remainder (-> pure ((i int) (j int)) int)
modulo (-> pure ({(i int) (j int)) int)
absolute (> pure ((i int)) int)

The subroutines =, <, >, <= and >= respectively return #t
if x is equal, less than, greater than, less than or equal
to and greater than or equal to j and #f otherwise. The
subroutines +, * and - respectively return the sum, product
and difference of i and j. / returns the truncated division
of i by j. Neg returns the opposite of i. The subroutines
remainder and modulo both return the rest of the number-
theoretic integer division of i by j; they differ on negative
arguments (the value returned by remainder has the same
sign as i). Absolute returns the absolute value of i.

A dynamic error is signalled in case of division by zero or
overflow. The range of integer values and subroutines is
unspecified.

3.8. Float type

The float type denotes the set of floating point numbers.

A float literal is formed by an optional + or - sign (+ is
assumed if omitted), a non-empty succession of decimal
digits, a decimal point, a non-empty succession of decimal
digits and an optional exponent denoted by the letter E or
e, an optional + or - sign (+ is assumed if omitted) and a
sequence of decimal digits.

1= : (~> pure ((x float) (y float)) bool)
1< : (-> pure ((x float) (y float)) bool)
1> : (=> pure ((x float) (y float)) boel)
f1<= : (=> pure ((x float) (y float)) bool)
f1l>= : (-> pure ((x float) (y float)) bool)
11+ : (=> pure ((x float) (y float)) float)
11+ (-> pure ((x float) (y float)) float)
11- : (-> pure ((x float) (y float)) float)
11/ : (-> pure ((x float) (y float)) float)
flneg : (-> pure ((x float)) float)

flabs (-> pure ((x float)) float)

oxp (> pure ((x float)) float)

log : (=> pure ((x float)) float)

sqrt : (-> pure ((x float)) float)

sin : (-> pure ((x float)) float)

cos : (-> pure ((x float)) float)

tan : (-> pure ((x float)) float)

asin : (-> pure ((x float)) float)

acos : (-> pure ((x float)) float)

atan : (-> pure ((x float)) float)

floor : (-> pure ((x float)) int)

ceiling s (-> pure ((x float)) int)

truncate : (-> pure ((x float)) int)

round : (-> pure ((x float)) int)
int->float (-> pure ((x int)) float)
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The subroutines £1=, £1<, 1>, £1<= and £1>= respectively
return #t if x is equal to, less than, greater than, less than
or equal to and greater than or equal to y and #f otherwise.
The subroutines £1+, £1%, £1- and 1/ respectively return
the sum, product, difference and division of x and y. Flneg
returns the opposite of x. Flabs returns the absolute value
of x. Exp returnos e to the power of x. Log returns the nat-
ural logarithm (in base e) of x. Sqrt returns the square
root of x. The subroutines sin, cos, tan, asin, acos and
atan respectively return the sine, cosine, tangent, arcsine
(within }-7/2,7/2]), arccosine (within ]-7/2,7/2]) and arc-
tangent (within }7/2,7/2]) of x. The subroutines floor
and ceiling respectively return the largest and smallest
integer not larger and smaller t'.an x. Truncate returns the
integer of largest absolute value not larger than (flabs x)
and of same sign as x. Round returns the closest (even if
tie) integer to x. Int~>float returns the real z such that
(floor z) = (ceiling z) = x.

A dynamic error is signalled in case of division by zero,
overflow or underflow. The subrovtines log and sqrt sig-
nal an error if x is not positive. The precision of float-
ing point values and subroutines is unspecified: truncation
may occur if the number of significant digits is too large.

3.9. Char

The char type denotes the set of characters.

A character literal is formed by a #\ prefix icilowed by a
character or an identifier followed by a delimiter. The list
of allowed identifiers must include: backspace, newline,
page, space and tab.

type

char=? : (=> pure ((c char) (d char)) bool)
char<? : (-> pure ((c char) (d char)) bool)
char>? : (-> pure ((c char) (d char)) bool)
char<=? : (~> pure ((c char) (d char)) bool)
char>=7? : (=> pure ((c char) (d char)) bool)
char-ci=? : (-> pure ((c char) (d char)) bool)
char-ci<? : (=> pure ((c char) (d char)) bool)
char-ci>? : (-> pure ((c char) (d char)) bool)
char-ci<=7? (-> pure ((c char) (d char)) bool)
char-ci>=? : (-> pure ((c char) (d char)) bool)
char-alphabetic? : (-> pure ((c char)) bool)
char-numeric? : (~> pure ((c char)) bool)
char-whitespace? : (-> pure ((c char)) bool)
char-lower-case? : (> pure ((c char)) beol)
char-upper-case? : (=> pure ((c char)) bool)
char-upcase (-> pure ((c char)) char)

char-downcase (-> pure ((c char)) char)
char->int : (~> pure ((c char)) int)
int->char : (~> pure ((c int)) char)

The subroutines char=?, char<?, char>?, char<=? and
char>=? respectively return #t if ¢ is equal to, less than,
greater than, less than or equal to and greater than or
equal to d and #f otherwise; these tests are based on
a total ordering of characters which is compatible with
the ASCII standard on lower-case letters, upper-case let-
ters and digits (without any interleaving between let-
ters and digits). The subroutines char-ci=?, char-ci<?,
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char-¢i>?, char-ci<=? and char-ci>=? respectively re-
turn #t if ¢ is equal to, less than, greater than, less than
or equal to and greater than or equal to 4 and #f other-
wise; these tests are case-insensitive. Char-alphabetic?
returns #t when ¢ is alphabetic; a character is alpka-
betic if its lower-case version is between #\a and #\z.
Char-numeric? returns #t when c is a (decimal) digit.
Char-whitespace? returns #t when c is a white space.
The subroutine char-lower-case? (char-upper-case?)
returns #t if c is between #\a (#\A) and #\z (#\Z). The
subroutines char-upcase and char-downcase respectively
return the upper-case and lower-case version of ¢; non-
alphabetic characters remain unchanged. Char->int re-
turns the index of ¢ in the character ordering mentioned
above. Int->char returns the character with ordering in-
dex c.

Int->char signals an error if ¢ is not compatible with the
character ordering.

3.10.

String type

The string type denotes the set of mutable zero-based
integer-indexed sequences of characters. Once created, a
string is of constant length.

A string literal is formed by a double-quote ('), a sequence
of characters (where \ is the escape character for itself and
the double-quote character) and an ending double-quote.

make-string (-> init
((length int) (c char))
string)
string-length : (-> pure ((s string)) int)
string-ref : (-> read
((s string) (index int))
char)
string-set! : (=> write
((s string) (index int)
(new-c char))
unit)
string-£ill! : (~> write
((s string) (£ill char))
unit)
(=> read
((s string) (t string))
bool)
string<? : (=> read
((s string) (t string))
boel)
string>? : (> read
((s string) (t string))
bool)
string<=? : (~> read
((s string) (t string))
bool)

string=?

string>=? : (~> read
((s string) (t string))
bool)
string-ci=? : (-> read
((s string) (t string))
bool)
string-ci<? : (-> read
((s string) (t string))
bool)
string-ci>? : (-> read
((s string) (t string))
bool)
string-ci<=? : (-> read
((s string) (t string))
bool)
string-ci>=?7 : (-> read
((s string) (¢t string))
bool)
substring : (=> (maxeff init read)
((s string) (from int) (to int))
string)
string-append : (-> (maxeff init read)
((head string) (tail string))
string)
string-copy : (-> (maxeff init read)
((s string))
string)

Make-string allocates and returns a string of length
characters ¢. String-length returns the length of s.
String-ref returns the character of s that is at the
index position. String-set! replaces in s the char-
acter at the index position with new~c and returns #u.
String-1ill! replaces each character of s with £ill
and returns #u. The subroutines string=?, string<?,
string>?, string<=? and string>=? respectively return
#t if 8 is lexicographically equal to, less than, greater than,
less than or equal to and greater than or equal to t and #¢
otherwise. The subroutines string-ci=?, string-ci<?,
string-ci>?, string-ci<=? and string>=? respectively
return #t if s is lexicographically equal to, less than,
greater than, less than or equal to and greater than or
equal to t and #f otherwise; these tests are case-insensitive.
Substring allocates and returns a string formed from the
characters of s between the indices from and to (exclusive);
if from and to are equal, then the substring returned is the
empty string (**). String-append allocates and returns
a string formed by the concatenation of head and tail.
String-copy allocates and returns a string with the char-
acters present in s.

It is a dynamic error to try to access out-of-bounds el-
ements of strings. Substring signals a dynamic error
if from is not in [0, (string-length s)[, if to is not in
[0, (string~length s)] and if from is not less than or
equal to to.

3.11. Sym type
The sym type denotes the set of values that are solely de-

fined by their name.




A symbol literal is formed by a left parenthesis ((), the
keyword symbol, a case-insensitive identifier and a right
parenthesis ()).

sym->string : (-> ipit ((s sym)) string)
string->sym : (~> read ((s string)) sym)
sym=? : (-> pure
((s sym) (s sym))
bool)

Sym->string allocates and returns a string corresponding
to the name of s. String->sym returns the symbol with
name 8. Sym=? returns #t if 8 and t have the same name
and #f otherwise.

3.12. Permutation type

The psrmutation type denotes the set of one-to-one map-
pings on finite intervals of integers starting at 0. Other
permutation operations are described with the vector op-
erations (see below).

make-permutation (-> pure
((pi (-> pure
((from int))
int))
(length int))
permutation)
(~> pure
((length int) (offset int))
permutation)
(=> pure
((length int))
permutation)

cshift

identity

Make-permutation returns the permutation that maps ev-
ery integer from in the interval [0,1length[ to (pi from).
Cshift returns the permutation that performs a circular
shift (i.e. elements shifted out at one end are shifted in
at the other end) on the interval [0,1ength[ by offset
positions on the right if offset is positive and by (neg
offset) positions on the left otherwise. Identity returns
a permutation that maps every positive integer less than
length to itself.

Make-permutation signals a dynamic error if length is not
positive. It is a dynamic error if pi does not define a one-
to-one mapping. The subroutines cshift and identity
signal an error if length is not positive.

3.13. Refof (->> type)

The type (refof t) denotes the set of mutable references
to values of type t. It is already defined in the FX Kernel
(cf. previous chapter).

ref : (poly ((t type))
(=> init ((val0 1)) (refof t)))
: (poly ((t type))
(~> read ((ref (refof t))) t))
= : (poly ((t type))
(<> write
((ref (refof t))
unit))

(vall t))
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Re? allocates and returns a new reference with initial value
valO. - returns the value stored in ref. := replaces the
value stored in ret with vall and returns #u.

3.14. Uniqueof (->> type)
The type (uniqueof t) denotes the multiset of values of

type ¢t.

unique (poly ((t type))

(=> irpit ((z t)) (uniqueof t)))
value : (poly ((t type))

(-> pure ((u (uniqueof t))) t))
eq? : (poly ((t type))

(-> pure
((u1l (uniqueof t))
(u2 (uniqueof t)))
bool))

Unique allocates and returns a unique value from x; the
init effect ensures that no memoization will be performed
on calls to unique. Value returns the embedded value
corresponding to u. Eq? returns #t when ui and u2 have
been created by the same call to unique.

3.15. Listof (->> type)

The type (1istof t) denotes the set of mutable homoge-

neous lists of values of type t.
null (poly ((t type))
(-> pure () (listof t)))
(poly ((t type))
(-> pure ((list (listof t))) bool))
(poly ((t type))
(~> init
((car t) (cdr (listof t)))
(listof t)))
(poly ((t type))
(-> read ((list (listof t))) t))
(poly ((t type))
(=> read
((list (listof t)))
Q1istof t)))
(poly ((t type))
(=> write
((list (Qistof t)) (new t))
unit))
(poly ({z type))
(=> write
((1ist (listof t)) (new (listof t)))
unit))
(poly ((t type))
(-> read ((list (listof t))) int))
(poly ((t type))
(> (maxeff read init)
((front (listof t))
(rear (listof t)))
(1istof t)))

null?

cons

car

cdr

gset-car!

set-cdr!

length
append
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reverse (poly ((t type))
(~> (maxeff init read)
(Qlist (Qistof t)))
(listof t)))
list-tail (poly ((t type))
(=> read
((list (Qistof t)) (minus int))
Qlistof t)))
list-ref : (poly ((t type))
(-> read
((list (listof t)) (index int))
t))
map (poly ((t1 type) (t2 type) (e effect))
(<> (maxeff e init read)
(£ (-> o ((x t1)) t2))
(list (listof t1)))
(listof t2)))
for-each (poly ((t1 type) (t2 type) (e effect))
(=> (maxeff e read)
(£ (-> o ((x t1)) t2))
(list (listof t1)))
unit))
reduce (poly ((t1 type) (22 type) (e effect))

(=> (maxeff e read)
((f (=> o ((x t1) (red t2)) t2))
(list (listof t1))
(seed t2))
t2))

(=> (maxeff read init)
((chars (listof char)))
string)

(-> (maxeff read init)
((chars string))
(listof char))

list~->string :

string->list :

Null returns the empty list. Full? returns #¢t if the list
is empty and #2 otherwise. Cons allocates and returns a list
with car as first element and cdr as remaining elements.
Car returns the first element of 1ist. Cdr returns the list
after the first element of 1ist. Set-car! replaces the first
element of 1ist with new and returns #u. Set-cdr! re-
places the rest of 1ist with new and returns #u. Length
returns the number of elements in 1ist. Append allocates
and returns a list that is the concatenation of front and
rear. Reverse allocates and returns a list with the el-
ements of 1ist in the reverse order. List-tail returns
the sublist of 1ist after omitting its first minus elements.
List-ref returns the index-th element of 1ist. Map al-
locates and returns a list that is obtained by consing the
results of applying £ on each element x of 1ist from left to
right. For-each applies £ to each element x of 1ist from
left to right and returns #u. Reduce returns the resuit
of the right-associative running (in red) applications of £
with each element x of 1ist, beginning with seed; seed
is returned if 1list is empty. List->string allocates and
returns a string made of chars. String->list allocates
and returns a list made of chars.

It is a dynamic error to apply access operations such as
car or cdr on the empty list. A dynamic error is signalled
if set-car! or set-cdr! is applied to the empty list. A
dynamic error is signalled if the index is out of range in
list-ref or if minus is greater than the length of 1ist in

list-tail.

3.16. Vectorof (->> type)

The type (vectorof t) denotes the set of mutable, zero-
based, integer-indexed, homogeneous vectors that contain
elements of type t. Once created, a vector is of constant
length.

make-vector (poly ((t type))
(=> init
((length int) (value t))
(vectorof t)))
(poly ((z typs))
(-> pure
((vector (vectoro? t)))
int))
(poly ((t type))
(-> read
((vector (vectorof t))
(index int))
t))
(poly ((t type))
(=> write
((vector (vectorof t))
(index int)
(new t))
unit))
(poly ((t type))
(~> write
({0o1d (vectorof t))
(new t))
unit))
(poly ((t type))

(=> (maxeff init read)
((vector (vectorof t)))
(listo? t)))

(poly ({(t type))

{=> (maxeff init read)
((list (listof t)))
(vectorof t)))

(pely ((t1 type) (t2 type) (e offect))
(~> (maxeff e init read)
(2 (> ¢ ((v 1)) t2))
(vector (vectorof t1)))
(vectorof t2)))

vector-length :

vector-ref s

vector-set!

vector-f£ill!

vector->list :

list->vector :

vector-map

vector-map2 :
(~> (maxeff ¢ init read)
(2 (=> ¢ ((v1 t1) (¥v2 £2)) w))
(vectorl (vectorof ti))
(vector2 (vectorof t2)))
(vectorof u)))

(poly ((t type) (u typs) (e effect))
(~> (maxeff ¢ read)
(2 (> & ((x t) (red u)) u))
(vector (vectorof t))
{(seed u))
a))

vector-reduce :

(poly ((t1 type) (t2 type) (u type) (e effect))




scan (poly ((t type) (e effect))
(-> (maxeff e init read)
((f (~> e ((xt) (y t)) t)
(vector (vectorof t)))
(vectorof t)))
(poly ((t type) (e effect))
(-> (maxeff e init read)
(£ (=> 0 ({x ¢) (y t)) t))
(segments (vectorof bool))
(vector (vectorof t)))
(vectorof t)))
(poly ((t type))
(-> (maxeff init read)
((mapping permutation)
(vector (vectorof t)))
(vectorof t)))
(poly ((t type))
(=> (maxeff init read)
({(selection (vectorof bool))
(vector (vectorof t)))
(vectorof t)))
(poly ((t type))
(=> (maxeff init read)
((selection (vectoraof bool))
(vactor (vectorof t))
(default (vectorof t)))
(vectorof t)))
(poly ((t type))
(=> (maxeff init read)
((offset int)
(vector (vectorof t))
(default (vectorof t)))
(vectorof t)))

segmented-scan

permute

compress

expand

eoshift

Make-vector allocates and returns a vector of length el-
ements, each having the given value. Vector-length re-
turns the number of elements in vector. Vector-ref re-
turns the index-th element of vector. Vector-set! re-
places the index-th value of vector with new and returns
#u. Vector-£ill! replaces each element of o1ld with new
and returns #u. Vector->list returns a list constructed
from the elements of vector. List->vector allocates and
returns a vector constructed from the elements of list.
Vector-map allocates and returns a vector that is obtained
by applying 2 to each element v of vector. Vector-map2
allocates and returns a vector that is obtained by apply-
ing 2 to each element vi of vectori and v2 of vector2.
Vector-reduce returns the result of the right-associative
running (in red) applications of 2 with each element of
vector. Scan allocates and returns a vector in which the
elernent of offset i-1 is the reduction by t of the first i el-
ements of vector. Segmented-scan allocates and returns
a vector that contains the reductions by £ of subvectors
of vector corresponding to each contiguous sequence of
#1 of segments. Permute allocates and returns a vec-
tor obtained by permuting vector according to mapping;
specifically, if mapping maps z to y, then (vector-ret
(permute mapping vector) y) is (vector-ref vector
z). Compress allocates and returns a vector obtained by
selecting from vector the elements that have a correspond-
ing #t value in selection. Expand allocates and returns a
vector obtained by replicating default, except for entries
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in selection that are #t in which case the next available
element of vector is chosen. Eoshift allocates and re-
turns a vector obtained by performing an “End-Off” shift
(i.e. element are shifted out at one end and default val-
ues are shifted in at the other end) of vector by offset
positions on the right if offset is positive and by (neg
offset) positions on the left otherwise.

The subroutines vector-ref and vector-set! signal a
dynamic error if index
is not in [0, (vector-length vector)[. It is a dynamic
error for £ not to be associative in vector-reduce, scan
and segmented-scan. Segmented-scan signals a dynamic
error if the lengths of segments and vector uiffer. Permute
signals a dynamic error if the length of input differs from
the domain of the mapping. Compress signals a dynamic
error if the lengths of selection and vector differ. Expand
signals a dynamic error if the length of selection and
detault differ.

3.17. Sexp type

The sexp type denote the set of values that are usually de-
fined as “symbolic expressions”. The type sexp is defined
by:

(define-datatype sexp
(unit->sexp unit)
{bool->sexp bool)
(sym->sexp sym)
(int->gexp int)
(float->sexp float)
(char->sexp char)
(string~>sexp string)
(list->sexp (listof sexp))
(vector->sexp (vectorof sexp)))

sexp=? (=> read ((s1 sexp) (52 sexp)) bool)

Sexp=? (recursively) compares the two symbolic expres-
sions s1 and s2 for equality; for each basic type, the ap-
propriate equality function is used.

Values of type sexp can be introduced in programs by the
“quote” symbol () in front of a symbolic constant. A sym-
bolic constant is either a literal, a sequence of symbolic
constants between parentheses (preceded by a hash sign
for vectors). The desugaring of a symbolic constant is de-
fined by induction:

o if the symbolic constant is a literal I of type t
(e.g., 1.3), then its desugaring is (t->sexp 1) (e.g.,
(float->sexp 1.3)).

o if the symbolic constant is a sequence between paren-
theses, then the desugarings of the constituents are
gathered in a list [ of type (1istof sexp) and its
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desugaring is (List->sexp !). If the sequence is pre-
ceded by a hash sign (#), then a vector v of type
(vectorof sexp) is gathered and its desugaring is
(vector->sexp v).

3.18. Stream type

The type stream denotes the set of values that serve as
sequenced source or sink of values of type char. For pro-
gramming convenience, the £x module contains operations
on streams supporting the sexp type.

standard-input :

standard-output :
open-input-stream

stroam

stream

(=> (maxeff init write)

((file string))

stream)

(maxeff init write)

((file string))

stream)

urite

((output stream) (value sexp))

open-output-stream: (->

stream-write-sexp (->

unit)
vrite-sexp : (-> write ((value sexp)) unit)
stream-write-char : (-> write
((output stream) (value char))
unit)
write-char (-> write ((value char)) unit)
stream-read-sexp (-> write ((input stream)) sexp)
read-gexp : (-> urite () seoxp)
atream-read~-char : (-> write ((input stream)) char)
read-char : (~> write () char)
stream-char-eof? (=> write ((input stream)) bool)
stream-sexp—-eof? :  (-> srite ((input stream)) bool)
close-stream 3 (=> erite ((st stream)) unit)
error : (poly ((t type))
(-> write
((message string))
t))

Standard-input and : andard-output are implement-
ation-defined streams (usually connected to the user ter-
minal) on which input and output operations can be per-
formed, respectively. Open-input-stream allocates and
returns an input stream connected to the file. The inter-
pretation of the string £ile is implementation-dependent.
Stream-read-sexp and stream-read-char return the first
value of the input stream. Read-sexp and read-char
return the first value of the standard-input-stream.
Open-output-stream allocates and returns an output
stream connected to the file. Again, the interpre-
tation of the string file is implementation-dependent.
Stream-write-sexp and stream-write-char send the
value to the output stream and return #u. Write-sexp
and write-char send the value to the standard-output
stream. Read operations have a write effect because
they change the state of the stream. Stream-char-eof?
returns #t if no more characters can be read from the
input, #2 otherwise. Stream-sexp-eof? returns #t if
the end of the input will be reached before the start of the
next s-expression, #f otherwise. Thus stream-sexp-eof?
returns #f if there is only an incomplete s-expression

at the end of the stream. Close-stream closes the
stream st and returns #u. Both stream-sexp-eof? and
stream-char-eof? return #t when applied to closed
streams. Error prints its message on standard-output
and signals a dynamic error.

Open-input-stream and open-output-stream signal a
dynamic error if the file cannot be opened. It is a dy-
namic error to perform any operation (apart from testing
for end of file) on a closed stream. It is a dynamic er-
ror to perform a read operation on an input stream if
(stream-char-eof? input) is true. It is a dynamic error
to perform a stream-sexp-read operation on an input
stream if (stream-sexp-eof? input) is true. A dynamic
error is signalled on attempts to read from a stream opened
for output and on attempts to write to a stream opened
for input. It is a dynamic error to apply an -eof? pred-
icate to an output file. A dynamic error is signalled if

a malformed s-expression is encountered by read-sexp or
stream-read-sexp.
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ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS,
KEYWORDS, AND PROCEDURES

9,19

* 17
< 17
> 17
>=,17
<=, 17

+ 17
- 17
/,17
:=,9,19
=17

abs, 7, 16
absolute, 17
acos, 17
and, 14
and?, 16
append, 19
application
description, 6
value, 9
asin, 17
atan, 17

begin, 9
bool, 6, 16
bool->sexp, 21

car, 19

cdr, 19

ceiling, 17

char, 17

char>, 17

char>?, 17
char>=7, 17
char<=7, 17
char->int, 17
char->sexp, 21
char-alphabetic?, 17
char-ci>, 17
char-ci>?, 17
char-ci>=?, 17
char-ci<=?, 17
char-ci=?, 17
char-downcase, 17
char-lover-case?, 17
char-numeric?, 17
char-upcase, 17

char-upper-case?, 17
char-whitespace?, 17
char=7, 17
character, 3

extended, 3

white space, 3
close-streanm, 22
comment, 4
compress, 21
cond, 14
cons, 19
conventic-s, 4
cos, 17
cshift, 19

defabs, 11
defdatatype, 15
defdesc, 11
define, 11, 15
deftyped, 11
delimiter, 3
desc, 7
dfunc, 5
digit, 3
dlambda, 6
do, 15
dot
notation, 14
dot-dot
notation, 15

effect, 5
environment.kind, 5
environment,type, 5
eoshift, 21
eq?, 19
equiv?, 16
error, 22
errors
dynamic, 4
static, 4
exp, 17
expand, 21
expansive, 10
expression
description, 5
kind, §
value, 5
extend, 9
extract, 10

1%, 17




1<, 17
1>, 17
11>=, 17
11<=, 17

11+, 17

1-, 17

1/, 17

1=, 17
flabs, 17
flneg, 17
float, 17
float->sexp, 21
floor, 17
for-each, 20
FV,5

identifier, 4
description, 6
reserved, 4
value, 9

identity, 19

if, 10

inferable, 6

init, 6, 16

int, 16

int->char, 17

int->float, 17

int->sexp, 21

lambdz, 10

le. 4,19

let, 10

let+, 14
letrec, 14
letter, 3
list->sexp
list->string, 20
list->vector, 20
list-ref, 20
list~-tail, 20
listof, 19
literal, 4, 8

load, 11

log, 17

make-permutation, 19
make-string, 18
make-vector, 20
map, 20

match, 14

maxeff, 7
memoization, 2
module, 11
moduleot, 7
modulo, 17

Index

neg, 17

not?, 16
notations, 4
nol_ezpansive, 10
null, 19
nuil?, 19
number, 3

open, 12
open-input-stream, 22
open—output-stream, 22
or, 14

or?, 16

permutation, 19
permute 21
plambda, 12
poly, 7
product, 12
productof, 7
proj, 12
projection
implicit, 12
0,15
pure, 6, 16

read, 6, 16
read-char, 22
read-sexp, 22
reduce, 20
ret, 9, 19
refof, 6, 19
remainder, 17
Reserved identifiers, 4
reverse, 20
round, 17

scan, 21
segmented-scan, 21
select, 8
get-car!, 19
set-cdr!?, 19

sexp, 21

sexp=?, 21

sin, 17

sqrt, 17
standard-input, 22
standard-output, 22
store, 8

stream, 22
stream-char-eof?, 22
stream-read-char, 22
stream-read-sexp, 22
stream-sexp-eof?, 22
stream-write-char, 22
stream-write-sexp, 22
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string, 18
string>, 18
string>?, 18
string>=?, 18
string<=?, 18
string->list, 20
string->sexp, 21
string->sym, 19
string-append, 18
string-ci>, 18
string-ci>?, 18
string-ci>=?, 18
string-ci<=?, 18
string-ci=?, 18
string-copy, 18
string-£ill!, 18
string-length, 18
string-ref, 18
string-set!, 18
string=?, 18
subr, 6
substitution, 4
substring, 18
sum, 12

sumof, 8

sym, 18
sym->sexp, 21
sym->string, 19
sym=?, 19

tagcase, 13
tan, 17
the, 13
token, 3
truncate, 17
type, 5

unique, 19
uniqueof, 19
unit, 6, 16
unit->sexp, 21

val, 7, 16, 19
value, 8
variable

bound, 4

free, 4, 5
vector->list, 20
vectcr->sexp, 21
vector-£ill!, 20
vector-length, 20
vector-map, 20
vector-map2, 20
vector-reduce, 20
vector-ref, 20
vector-set!, 20

vectorof, 20

with, 13
write, 6, 16
write-char, 22
write-sexp, 22




